Esta monografía se orienta a explorar los conceptos relacionados con la fabricación de aleaciones avanzadas de titanio, que permitan satisfacer los requisitos en servicio necesarios para ser empleados como prótesis. Se estructura en cinco capítulos donde se abordará la problemática industrial del desarrollo de aleaciones avanzadas de titanio.

En el primer capítulo se expone la situación actual de las aleaciones de titanio dentro del sector médico. En el segundo capítulo se examinan las tecnologías empleadas para la fabricación de aleaciones. En el tercer capítulo se abordan los conceptos de modificación superficial. En el cuarto capítulo, se identifican las vías y etapas para eliminar la porosidad residual. El último capítulo evalúa el efecto que tiene la composición química, la microestructura y el tratamiento superficial en la resistencia frente a la corrosión de las aleaciones de titanio.

A. Giacomello, S. Meloni, M. Chinappi, C.M. Casciola, Cassie-baxter and wenzel states on a nanostructured surface: Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations, Langmuir. 28 (2012) 10764–10772. https://doi.org/10.1021/la3018453

Abkowitz, S. M., Abkowitz, S., & Fisher, H. (2011). Breakthrough claimed for titanium PM. Metal Powder Report, 66(6), 16–21. https://doi.org/10.1016/S0026­0657(12)70015-2
Abkowitz, S., Abkowitz, S., & Fisher, H. (2015). Titanium alloy components manufacture from blended elemental powder and the qualification process. In Titanium Powder Metallurgy: Science, Technology and Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800054-0.00017-4
Ahlfors, M., Hjärne, J., & Shipley, J. (2018). Cost effective Hot Isostatic Pressing. A cost calculation study for AM parts. Quintus Technologies, September, 1–6.
Ahmed, M., Gazder, A. A., Savvakin, D. G., Ivasishin, O. M., & Pereloma, E. V. (2012). Microstructure evolution and alloying elements distribution between the phases in powder near-b titanium alloys during thermo-mechanical processing. Journal of Materials Science, 47(19), 7013–7025. https://doi.org/10.1007/s10853-012-6652-3
Amigó-Borrás, V., Lario-Femenía, J., Amigó-Mata, A., & Vicente-Escuder, Á. (2021). Titanium, Titanium Alloys and Composites. Encyclopedia of Materials: Metals and Alloys, 1, 179–199. https://doi.org/10.1016/B978-0-12-819726-4.00044-2
Anon. (2018). World Preview 2018, Outlook to 2024. Evaluate Pharma, June. http://info.evaluategroup.com/rs/607-YGS-364/images/WP2018.pdf
Antonello Vicenzo. “Anodic growth of titanium oxide: Electrochemical behaviour and morphological evolution”. Electrochimica Acta, 2012
Aparicio, C., Padr, A., & Gil, F. J. (2011). In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. Journal of the Mechanical Behavior of Biomedical Materials, 4(8), 1672–1682. https://doi.org/10.1016/j.jmbbm.2011.05.005
ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International, October 01, 1990. ISBN: 978-0-87170-378-1
ASM Handbook Volume 7. Powder Metal Technologies and Applications. 1998 by ASM International. ISBN 0-87170-387-4. https://doi.org/ 10.31399/asm.hb.v07.a0006034
ASM Handbook, Volume 15: Casting Volume 15 Handbook Committee, p 1-8. https://doi.org/10.1361/asmhba0005200
Assis, S. L. de, Wolynec, S., & Costa, I. (2006). Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta, 51(8–9), 1815–1819. https://doi.org/10.1016/j.electacta.2005.02.121
Ban, S., Iwaya, Y.*, H., & Sato, H. (2006). Surface modification of titanium by etching in concentrated sulfuric acid. Dental Materials, 22(12), 1115–1120. https://doi.org/10.1016/j.dental.2005.09.007
Bauer, S., Pittrof, A., Tsuchiya, H., & Schmuki, P. (2011). Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochemistry Communications, 13(6), 538–541. https://doi.org/10.1016/j.elecom.2011.03.003
Berger, S., Albu, S. P., Schmidt-Stein, F., Hildebrand, H., Schmuki, P., Hammond,
J. S., Reichlmaier, S. (2011). The origin for tubular growth of TiO2nanotubes: A fluoride rich layer between tube-walls. Surface Science, 605(19–20), L57–L60. https://doi.org/10.1016/j.susc.2011.06.019
Bjursten, L. M., Rasmusson, L., Oh, S., Smith, G. C., Brammer, K. S., & Jin, S. (2010). Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research - Part A, 92(3), 1218–1224. https://doi.org/10.1002/jbm.a.32463
Bolzoni, L., Ruiz-Navas, E. M., Zhang, D., & Gordo, E. (2012). Modification of sintered titanium alloys by hot isostatic pressing. Key Engineering Materials, 520(July 2014), 63–69. https://doi.org/10.4028/www.scientific.net/KEM.520.63
Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., Heyde, H. van der, & Jin, S. (2009). Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 5(8), 3215–3223. https://doi.org/10.1016/j.actbio.2009.05.008
Branemark, P.-I., Hansson, H.-A., Lindstrom, J., Li, J. P., Li, S. H., Griss, P. (1981). Osseointegrated titanium implants. Journal of Biomedical Materials Research. Part A, 14(3), 223–33. https://doi.org/10.1002/jbm.a.30278
Cai, Q., Yang, L., & Yu, Y. (2006). Investigations on the self-organized growth of TiO2nanotube arrays by anodic oxidization. Thin Solid Films, 515(4), 1802–1806. https://doi.org/10.1016/j.tsf.2006.06.040
Çaliskan, N., Bayram, C., Erdal, E., Karahaliloglu, Z., & Denkbas, E. B. (2014). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Materials Science and Engineering C, 35(1), 100–105. https://doi.org/10.1016/j.msec.2013.10.033
Cao, W., Chen, K., & Xue, D. (2021). Highly ordered TiO2 nanotube arrays with engineered electrochemical energy storage performances. Materials, 14(3), 1–12. https://doi.org/10.3390/ma14030510
Chen, G., Zhao, S. Y., Tan, P., Wang, J., Xiang, C. S., & Tang, H. P. (2018). A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technology, 333, 38–46. https://doi.org/10.1016/j.powtec.2018.04.013
Chennell, P., Feschet-chassot, E., Devers, T., & Awitor, K. O. (2013). In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. International Journal of Pharmaceutics, 455(1–2), 298–305. https://doi.org/10.1016/j.ijpharm.2013.07.014
Cho, K., Niinomi, M., Nakai, M., Hieda, J., & Kanekiyo, R. (2013). Improvement of tensile and fatigue properties of ß-titanium alloy while maintaining low young’s modulus through grain https://doi.org/10.2320/matertrans.M2013151
Conference Updated industrial strategy: towards a more resilient and strategically autonomous EU industry. Economic, E., & Committee, S. (2021). ISBN 978-92-830-5395-8, https://doi.org/10.2864/017471
Cremasco, A., Messias, A. D., Esposito, A. R., Duek, E. A. D. R., & Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering C, 31(5), 833–839. https://doi.org/10.1016/j.msec.2010.12.013
Cremasco, A., Osio, W. R., Freire, C. M. A., Garcia, A., & Caram, R. (2008). Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses. Electrochimica Acta, 53(14), 4867–4874. https://doi.org/10.1016/j.electacta.2008.02.011
Critical Raw Materials : civil society calls for firm and fast action to secure supply and maintain a strong industrial base in the EU Position paper. Economic, E., & Committee, S. (2021). ISBN 978-92-830-5337-8, https://doi.org/10.2864/211997
Cui, C., Hu, B. M., Zhao, L., & Liu, S. (2011). Titanium alloy production technology, market prospects and industry development. Materials and Design, 32(3), 1684– 1691. https://doi.org/10.1016/j.matdes.2010.09.011
Das, K., Bose, S., & Bandyopadhyay, A. (2007). Surface modifications and cell­materials interactions with anodized Ti. Acta Biomaterialia, 3(4), 573–585. https://doi.org/10.1016/j.actbio.2006.12.003
Das, K., Bose, S., & Bandyopadhyay, A. (2009). TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Journal of Biomedical Materials Research - Part A, 90(1), 225–237. http://doi.org/10.1002/jbm.a.32088
DERA (2019) Pricelist of raw materials/. Available at: https://www.bgr.bund.de/DE/Themen/Min_rohstoffe/Produkte/produkte_node.ht ml?tab=Rohstoffpreise (Accessed: 7 July 2019).
Diamanti, M. V., Spreafico, F. C., & Pedeferri, M. P. (2013). Production of anodic TiO2 nanofilms and their characterization. Physics Procedia, 40, 30–37. https://doi.org/10.1016/j.phpro.2012.12.004
Dong, S., Wang, B., Song, Y., Ma, G., Xu, H., Savvakin, D., & Ivasishin, O. (2021). Comparative Study on Cold Compaction Behavior of TiH2 Powder and HDH-Ti Powder. Advances in Materials Science and Engineering, 2021. https://doi.org/10.1155/2021/9999541
Duraccio, D., Mussano, F., & Faga, M. G. (2015). Biomaterials for dental implants: current and future trends. Journal of Materials Science, 50(14), 4779–4812. https://doi.org/10.1007/s10853-015-9056-3
Eisenbarth, E., Velten, D., Mler, M., Thull, R., & Breme, J. (2004). Biocompatibility of ß-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705–5713. https://doi.org/10.1016/j.biomaterials.2004.01.021
Encyclopedia of Materials: Science and Technology. ISBN: 0-08-0431526
Estrin, Y., Kim, H., Pang, H., Lapovok, R., Ng, H. P., & Jo, J. (2013). Available from Deakin Research Online: Mechanical Strength and Biocompatibility of Ultrafine-Grained Commercial Purity Titanium, 2013, 1–6. https://doi.org/10.1155/2013/914764
European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, Study on the review of the list of critical raw materials: final report, Publications Office, 2017, https://data.europa.eu/doi/10.2873/876644
EvaluatePharma. (2016). World Preview 2016, Outlook to 2022. June, 1–39. www.evaluate.com/MedtechWorldPreview2016
Fan, J., Li, J., Kou, H., Hua, K., Tang, B., & Zhang, Y. (2016). Microstructure and mechanical property correlation and property optimization of a near ß titanium alloy Ti-7333. Journal of Alloys and Compounds, 682, 517–524. https://doi.org/10.1016/j.jallcom.2016.04.303
Fang, Z. Z., & Sun, P. (2012). Pathways to optimize performance/cost ratio of powder metallurgy titanium -A perspective. Key Engineering Materials, 520, 15–23. https://doi.org/10.4028/www.scientific.net/KEM.520.15
Fang, Z. Z., Paramore, J. D., Sun, P., Chandran, K. S. R., Zhang, Y., Xia, Y., Cao, F., Koopman, M., & Free, M. (2018). Powder metallurgy of titanium–past, present, and future. International Materials Reviews, 63(7), 407–459. https://doi.org/10.1080/09506608.2017.1366003
Fernandes, D., Prokofiev, E., Valiev, R., Almeida, A., Monteiro, E., & Elias, C. (2018). Corrosion Susceptibility of Surface Etched Ultrafine Grained Titanium and its Alloys under Physiological. 5(July), 1–10. https://doi.org/10.20944/preprints201807.0464.v1
Ferreira, C. P., Gonçalves, M. C., Caram, R., Bertazzoli, R., & Rodrigues, C. A. (2013). Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys. Applied Surface Science, 285(PARTB), 226– 234. https://doi.org/10.1016/j.apsusc.2013.08.041
Froes, F. H. (2015). Titanium: Physical Metallurgy, Processing, and Applications. ASM International, ISBN 10: 1-62708-079-1. https://doi.org/10.31399/asm.tb.tpmpa.9781627083188
Froes, F. H., Friedrich, H., Kiese, J., & Bergoint, D. (2004). Titanium in the Family Automobile: The Cost Challenge. Jom, 56(2), 40–44. https://doi.org/10.1007/s11837-004-0144-0
Gautam, S., Bhatnagar, D., Bansal, D., Batra, H., & Goyal, N. (2022). Recent advancements in nanomaterials for biomedical implants. Biomedical Engineering Advances, 3(March), 100029. https://doi.org/10.1016/j.bea.2022.100029
Gerdemann, S. J., & Jablonski, P. D. (2011). Compaction of titanium powders. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 42(5), 1325–1333. https://doi.org/10.1007/s11661-010-0520-z
Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive Manufacturing Technologies. In Development. https://doi.org/10.1007/978-1-4419-1120-9
Hanawa, T. Metals and Medicine. Mater. Trans. 2021, 62, 139–148. https://doi.org/10.2320/matertrans.MT-M2020268
Handbook of Materials for Medical Devices, by J.R. Davis; published by ASM International, 9639 Kinsman Road, Materials Park, OH 44073; © 2003; ISBN 0-87170-790-X.
Hang, R., Liu, Y., Zhao, L., Gao, A., Bai, L., Huang, X., Zhang, X., Tang, B., & Chu, P. K. (2014). Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications. Scientific Reports, 4, 21–24. https://doi.org/10.1038/srep07547
Hartman, A. D., Gerdemann, S. J., Hansen, J. S., & Turner, P. C. (1998). Producing lower-cost titanium for automotive applications. Jom, 50(9), 16–19. https://doi.org/10.1007/s11837-998-0408-1
He, B., Cheng, X., Li, J., Li, G. C., & Wang, H. M. (2017). .-assisted a phase and hardness of Ti-5Al-5Mo-5V-1Cr-1Fe during low temperature isothermal heat treatment after laser surface remelting. Journal of Alloys and Compounds, 708, 1054–1062. https://doi.org/10.1016/j.jallcom.2017.03.089
Herrero-Climent, M., Lázaro, P., Vicente Rios, J., Lluch, S., Marqués-Calvo, M. S., Guillem-Martí, J., & Gil, F. J. (2013). Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: In vitro and in vivo studies. Journal of Materials Science: Materials in Medicine, 24(8), 2047–2055. https://doi.org/10.1007/s10856-013-4935-0
Hollander, D. a., Von Walter, M., Wirtz, T., Sellei, R., Schmidt-Rohlfing, B., Paar, O., & Erli, H. J. (2006). Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials, 27(7), 955–963. https://doi.org/10.1016/j.biomaterials.2005.07.041
Holt, G., Parel, S., & Branemark, P. (1986). Osseointegrated Titanium Implants. Facial Plastic Surgery, 3(02), 113–124. https://doi.org/10.1055/s-2008-1064831
Huang, H. H., Wu, C. P., Sun, Y. S., & Lee, T. H. (2013). Improvements in the corrosion resistance and biocompatibility of biomedical Ti-6Al-7Nb alloy using an electrochemical anodization treatment. Thin Solid Films, 528, 157–162. https://doi.org/10.1016/j.tsf.2012.08.063
Hung, K. Y., Lin, Y. C., & Feng, H. P. (2017). The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials. Materials, 10(10). https://doi.org/10.3390/ma10101164
Implementing the EIP on Raw Materials in selected EU Member States. Economic, E., & Committee, S. (2015). ISBN 978-92-830-2917-5, https://doi.org/10.2864/203767
J. Lario (2019). Efecto del anodizado electroquímico en la obtencin de nanotubos en la superficie de aleaciones beta de titanio. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/129867
J.M. Macak, L. V. Taveira, H. Tsuchiya, K. Sirotna, J. Macak, P. Schmuki, Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization, J. Electroceramics. 16 (2006) 29–34. https://doi.org/10.1007/s10832-006-3904-0
J.R. Davis (2003), Handbook of Materials for Medical Devices. ASM International. https://doi.org/10.1361/hmmd2003p001
Jang, S. H., Choe, H. C., Ko, Y. M., & Brantley, W. A. (2009). Electrochemical characteristics of nanotubes formed on Ti-Nb alloys. Thin Solid Films, 517(17), 5038–5043. https://doi.org/10.1016/j.tsf.2009.03.166
Jeong, Y., Kim, E., Brantley, W. A., & Choe, H. (2014). Morphology of hydroxyapatite nanoparticles in coatings on nanotube-formed Ti e Nb e Zr alloys for dental implants. Vaccum, 107, 297–303. https://doi.org/10.1016/j.vacuum.2014.03.004
Karimi-Sibaki, E., Kharicha, A., Wu, M., Ludwig, A., & Bohacek, J. (2020). A Parametric Study of the Vacuum Arc Remelting (VAR) Process: Effects of Arc Radius, Side-Arcing, and Gas Cooling. Metallurgical and Materials Transactions
B: Process Metallurgy and Materials Processing Science, 51(1), 222–235. https://doi.org/10.1007/s11663-019-01719-5
Kedici, S. P., Aks, a, Kílíçarslan, M. a, Bayramoglu, G., & Gdemir, K. (1998). Corrosion behaviour of dental metals and alloys in different media. Journal of Oral Rehabilitation, 25(10), 800–808. https://doi.org/10.1046/j.1365-2842.1998.00305.x
Kim, E.S. et al., 2013. Formation of titanium dioxide nanotubes on Ti-30Nb-xTa alloys by anodizing. Thin Solid Films, 549, pp.141–146. http://dx.doi.org/10.1016/j.tsf.2013.08.058.
Kim, H. S., Yoo, S. J., Ahn, J. W., Kim, D. H., & Kim, W. J. (2011). Ultrafine grained titanium sheets with high strength and high corrosion resistance. Materials Science and Engineering A, 528(29–30), 8479–8485. https://doi.org/10.1016/j.msea.2011.07.074
Kim, W., Choe, H. & Brantley, W.A., 2011. Nanostructured surface changes of Ti – 35Ta – xZr alloys with changes in anodization factors. Thin Solid Films, 519(15), pp.4663–4667. Available at: http://dx.doi.org/10.1016/j.tsf.2011.01.013.
Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new ß type titanium alloys for implant materials. Materials Science and Engineering A, 243(1–2), 244–249. https://doi.org/10.1016/s0921-5093(97)00808-3
Lampman, S. (2018). Compressibility and Compactibility of Metal Powders. Powder Metallurgy, 7, 171–178. https://doi.org/10.31399/asm.hb.v07.a0006032 Landolt, D. (2007). Corrosion and surface chemistry of metals. In Corrosion and Surface Chemistry of Metals. https://doi.org/10.5860/choice.45-0897
Langdon, T. G. (2008). Processing of ultrafine-grained materials using severe plastic deformation: Potential for achieving exceptional properties. Revista de Metalurgia (Madrid), 44(6), 556–564. https://doi.org/10.3989/revmetalm.0838
Lario, J., Amigó, A., Segovia, F., & Amig V. (2018). Surface modification of Ti­35Nb-10Ta-1.5Fe by the double acid-etching process. Materials, 11(4), 1–11. https://doi.org/10.3390/ma11040494
Lario, J., Fombuena, V., Segovia, F., & Amigó, V. (2018). Influencia de la morfología nanotubular en la mojabilidad y ángulo de contacto de las aleaciones Ti6Al4V ELI, 54(4), 1–10. https://doi.org/10.3989/revmetalm.130
Lario, J., Fombuena, V., Vicente, Á. & Amigó, V. (2018). Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes. Metals. https://doi.org/10.3390/met8010037
Lario, J., Vicente Escuder, Á., Segovia, F., & Amigó, V. (2022). Electrochemical corrosion behavior of Ti–35Nb–7Zr–5Ta powder metallurgic alloys after Hot Isostatic Process in fluorinated artificial saliva. Journal of Materials Research and Technology, 16, 1435–1444. https://doi.org/10.1016/j.jmrt.2021.12.085
Lario, J., Vicente, Á., & Amigó, V. (2021). Evolution of the microstructure and mechanical properties of a Ti35Nb2Sn alloy post-processed by hot isostatic pressing for biomedical applications. Metals, 11(7). https://doi.org/10.3390/met11071027
Lario, J., Viera, M., Segovia, F., & Amigo, V. (2018). Artículo Regular Efecto de un tratamiento térmico sobre la composicin química y morfología de nanotubos de TiO2 obtenidos por anodizado Artículo Regular, 38(1), 100–109.
Lario, J., Viera, M., Vicente, Á., Igual, A., & Amigó, V. (2019). Corrosion behaviour of Ti6Al4V ELI nanotubes for biomedical applications. Journal of Materials Research and Technology, x x, 1–9. https://doi.org/10.1016/j.jmrt.2019.09.023
Lario-femenía, J., Amigó-mata, A., Vicente-escuder, Á., & Segovia-lópez, F. (2016). Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida til de los implantes. Revista de Metalurgia, 52(4), 1–13. https://doi.org/http://dx.doi.org/10.3989/revmetalm.084
Le Guehennec, L., Lopez-Heredia, M. A., Enkel, B., Weiss, P., Amouriq, Y., & Layrolle, P. (2008). Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomaterialia, 4(3), 535–543. https://doi.org/10.1016/j.actbio.2007.12.002
Lee, J. K., Choi, D. S., Jang, I., & Choi, W. Y. (2015). Improved osseointegration of dental titanium implants by tio2 nanotube arrays with recombinant human bone morphogenetic protein-2: A pilot in vivo study. International Journal of Nanomedicine, 10, 1145–1154. https://doi.org/10.2147/IJN.S78138
Lee, K. O., & Lee, S. B. (2012). Modeling of materials behavior at various temperatures of hot isostatically pressed superalloys. Materials Science and Engineering A, 541, 81–87. https://doi.org/10.1016/j.msea.2012.02.005
Lee, K., Jeong, Y., Brantley, W. A., & Choe, H. (2013). Surface characteristics of hydroxyapatite fi lms deposited on anodized titanium by an electrochemical method. Thin Solid Films, 546, 185–188. https://doi.org/10.1016/j.tsf.2013.04.077
Lentino JR. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 2003: 36:1157–61. https://doi.org/10.1086/374554
Lewandowska, M., Pisarek, M., Rozniatowski, K., Gradzka-Dahlke, M., Janik-Czachor, M., & Kurzydlowski, K. J. (2007). Nanoscale characterization of anodic oxide films on Ti-6Al-4V alloy. Thin Solid Films, 515(16 SPEC. ISS.), 6460– 6464. https://doi.org/10.1016/j.tsf.2006.11.074
Li, D., Ferguson, S. J., Beutler, T., Cochran, D. L., Sittig, C., Hirt, H. P., & Buser, D. (2002). Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. Journal of Biomedical Materials Research, 60(2), 325–332. https://doi.org/10.1002/jbm.10063
Li, Y., & Xu, J. (2017). Is niobium more corrosion-resistant than commercially pure titanium in fluoride-containing artificial saliva? Electrochimica Acta, 233, 151– 166. https://doi.org/10.1016/j.electacta.2017.03.015
Lin, W. C., Chuang, C. C., Wang, P. T., & Tang, C. M. (2018). A comparative study on the direct and pulsed current electrodeposition of cobalt-substituted hydroxyapatite for magnetic resonance imaging application. Materials, 12(1). https://doi.org/10.3390/ma12010116
Lind, M., Overgaard, S., Bnger, C., & Sballe, K. (1999). Improved bone anchorage of hydroxyapatite coated implants compared with tricalcium-phosphate coated implants in trabecular bone in dogs. Biomaterials, 20(9), 803–808. https://doi.org/10.1016/S0142-9612(98)00216-6
Liu, Y., Chen, L. F., Tang, H. P., Liu, C. T., Liu, B., & Huang, B. Y. (2006). Design of powder metallurgy titanium alloys and composites. Materials Science and Engineering A, 418(1–2), 25–35. https://doi.org/10.1016/j.msea.2005.10.057
Liu, Y., Minagawa, K., Kakisawa, H., & Halada, K. (2003). Hybrid atomization: Processing parameters and disintegration modes. International Journal of Powder Metallurgy (Princeton, New Jersey), 39(2), 29–37.
Liu, Y., Zhao, X. H., Lai, Y. J., Wang, Q. X., Lei, L. M., & Liang, S. J. (2020). A brief introduction to the selective laser melting of Ti6Al4V powders by supreme­speed plasma rotating electrode process. Progress in Natural Science: Materials International, 30(1), 94–99. https://doi.org/10.1016/j.pnsc.2019.12.004
Liu, Z., Wang, Y., Peng, X., Li, Y., Liu, Z., Liu, C., Huang, Y. (2012). Photoinduced superhydrophilicity of TiO 2 thin film with hierarchical Cu doping, 13, 1–5. https://doi.org/10.1088/1468-6996/13/2/025001
Long, M., & HJ, R. (1998). Titanium alloys in total joint replacement - A materials science perspective. Biomater, 19, 1621–1639 https://doi.org/10.1016/S0142­9612(97)00146-4
M.V. Diamanti. “Effect of anodic oxidation parameters on the titanium oxides formation”. Corrossion Science Vol 49, 939-948, 2007 https://doi.org/10.1016/j.corsci.2006.04.002
Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1–2), 3–18. https://doi.org/10.1016/j.cossms.2007.08.004
Mahboubi Soufiani, A., Karimzadeh, F., & Enayati, M. H. (2012). Formation mechanism and characterization of nanostructured Ti6Al4V alloy prepared by mechanical alloying. Materials and Design, 37, 152–160. https://doi.org/10.1016/j.matdes.2011.12.044
Manam, N. S., Harun, W. S. W., Shri, D. N. A., Ghani, S. A. C., Kurniawan, T., Ismail, M. H., & Ibrahim, M. H. I. (2017). Study of corrosion in biocompatible metals for implants: A review. Journal of Alloys and Compounds, 701, 698–715. https://doi.org/10.1016/j.jallcom.2017.01.196
Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995; 268: 1466–8. https://doi.org/10.1126/science.268.5216.1466
Materials for Medical Devices. Roger J. Narayan, ASM HANDBOOK VOL.23. ISBN electronic: 978-1-62708-198-6. https://doi.org/10.31399/asm.hb.v23.9781627081986
Matsuno, H., Yokoyama, A., Watari, F., Uo, M., & Kawasaki, T. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253–1262. https://doi.org/10.1016/S0142-9612(00)00275-1
Mazare, A., Voicu, G., Trusca, R., & Ionita, D. (2011). Heat treatment of TiO2 nanotubes, a way to significantly change their behaviour. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 73(1), 97–108.
Mendonça, G., Mendonça, D. B. S., & Araga, F. J. L. (2008). Biomaterials Advancing dental implant surface technology – From micron- to nanotopography, 29, 3822– 3835. https://doi.org/10.1016/j.biomaterials.2008.05.012
Minagar, S., Berndt, C. C., Wang, J., Ivanova, E., & Wen, C. (2012). A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 8(8), 2875–2888. https://doi.org/10.1016/j.actbio.2012.04.005
Molaei, R., Fatemi, A., & Phan, N. (2018). Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects. International Journal of Fatigue, 117(July), 352–370. https://doi.org/10.1016/j.ijfatigue.2018.07.035
Muley, A. V., Aravindan, S., & Singh, I. P. (2015). Nano and hybrid aluminum based metal matrix composites: An overview. Manufacturing Review, 2. https://doi.org/10.1051/mfreview/2015018
Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., Shindo, P. W., Medina, F. R., & Wicker, R. B. (2012). Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. Journal of Materials Science and Technology, 28(1), 1–14. https://doi.org/10.1016/S1005-0302(12)60016-4
Nakada H, Numata Y, Sakae T, Okazaki Y, Tanimoto Y, Tamaki H, et al. Comparison of bone mineral density and area of newly formed bone around Ti– 15%Zr–4%Nb–4%Ta alloy and Ti– 6%A1–4%V alloy implants. J Hard Tissue Biol 2008;17:99–108. https://doi.org/10.2485/jhtb.17.99
National Center for Health, S. (2015). Health, United States. Health, United States, 2014: With Special Feature on Adults Aged 55-64.
Navarro Laboulais, J., AmigMata, A., AmigBorrás, V., & Igual Muz, A. (2017). Electrochemical characterization and passivation behaviour of new beta­titanium alloys (Ti35Nb10Ta-xFe). Electrochimica Acta, 227, 410–418. https://doi.org/10.1016/j.electacta.2016.12.125
Nazari, K. A., Nouri, A., & Hilditch, T. (2015). Effects of milling time on powder packing characteristics and compressive mechanical properties of sintered Ti­10Nb-3Mo alloy. Materials Letters, 140, 55–58. https://doi.org/10.1016/j.matlet.2014.10.143
Neide K. Kuromoto. “Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages”. Materials Characterization Vol 58, 114-121, 2007https://doi.org/10.1016/j.matchar.2006.03.020
Neikov, O. D. (2019). Atomization and Granulation. In Handbook of Non-Ferrous Metal Powders (2nd ed.). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100543-9.00004-x
Neikov, O. D., & Gopienko, V. G. (2019). Production of Titanium and Titanium Alloy Powders. In Handbook of Non-Ferrous Metal Powders (2nd ed.). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100543-9.00018-x
Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 243(1–2), 231–236. https://doi.org/10.1016/s0921-5093(97)00806-x
Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001
Niinomi, M.; Nakai, M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 2011, 1–10. https://doi.org/10.1155/2011/836587
Okazaki, Y., & Gotoh, E. (2005). Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26(1), 11–21. https://doi.org/10.1016/j.biomaterials.2004.02.005
Oleg D. Neikov (2019). Chapter 3 Mechanical Alloying. Handbook of Non-Ferrous Metal Powders. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100543-9.00003-8
Ossowska, A. et al., 2014. Morphology and properties of nanotubular oxide layer on the “Ti–13Zr–13Nb” alloy. Surface and Coatings Technology, 258, pp.1239– 1248. https://doi.org/10.1016/j.surfcoat.2014.06.054
Ozaltin, K., Chrominski, W., Kulczyk, M., Panigrahi, A., Horky, J., Zehetbauer, M., & Lewandowska, M. (2014). Enhancement of mechanical properties of biocompatible Ti-45Nb alloy by hydrostatic extrusion. Journal of Materials Science, 49(20), 6930–6936. https://doi.org/10.1007/s10853-014-8397-7
Pan, J., Thierry, D., & Leygraf, C. (1996). Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta, 41(7–8), 1143–1153. https://doi.org/10.1016/0013-4686(95)00465-3
Pan, Y., Witt, P. J., Kuan, B., & Xie, D. (2014). EXTENDED ABSTRACT - 15 CFD Modelling of Dry Slag Granulation Using a Novel Spinning Disc Process. High Temperature Processing Symposium, 57–60.
Park, I. S., & Bae, T. S. (2014). The bioactivity of enhanced Ti-32Nb-5Zr alloy with anodic oxidation and cyclic calcification. International Journal of Precision Engineering and Manufacturing, 15(8), 1595–1600. https://doi.org/10.1007/s12541-014-0508-5
Paz, A., Martín, Y., Pazos, L. M., Parodi, M. B., Ybarra, G. O., & González, J. E. (2011). Obtencin de recubrimientos de hidroxiapatita sobre titanio mediante el método biomimético (•) Obtaining hydroxyapatite coatings on titanium by the biomimetic method, 47(2). https://doi.org/10.3989/revmetalmadrid.1009
Peters, C. L. and M. (2003). Titanium and Titanium Alloys Edited by WILEY-VCH Verlag GmbH & Co. KGaA. ISBN: 3-527-30534-3 Peters, M. (2003). Titanium and Titanium Alloys Fundamentals and Applications (Vol. 1). ISBN: 3-527-30534-3. WILEY-VCH Verlag GmbH. https://doi.org/10.1002/3527602119
Photo, M. B. / A. S. (2016). 2016 Global Life Sciences Outlook Moving Forward With Cautious Optimism. 1–28. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Life­Sciences-Health-Care/gx-lshc-2016-life-sciences-outlook.pdf
Puckett, S. D., Taylor, E., Raimondo, T., & Webster, T. J. (2010). Biomaterials The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), 706–713. https://doi.org/10.1016/j.biomaterials.2009.09.081
Pypen, C. M. J. M., Plenk, H., Ebel, M. F., Svagera, R., & Wernisch, J. (1997). Characterization of microblasted and reactive ion etched surfaces on the commercially pure metals niobium, tantalum and titanium. Journal of Materials Science: Materials in Medicine, 8(12), 781–784. https://doi.org/10.1023/A:1018568830442
R. Narayanan, S.K. Seshadri, Phosphoric acid anodization of Ti–6Al–4V—structural and corrosion aspects, Corros. Sci. 49 (2007) 542. https://doi.org/10.1016/j.corsci.2006.06.021
Raducanu, D., Vasilescu, E., Cojocaru, V. D., Cinca, I., Drob, P., Vasilescu, C., & Drob, S. I. (2011). Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1421–1430. https://doi.org/10.1016/j.jmbbm.2011.05.012
Ramasamy, D., Mohanesen, K., Maria, R., Samykano, M., Kadirgama, K., & Rahman, M. M. (2020). Analysis of Alumina Particles Size and Shape Formation from Developed Planetary Ball Mill. IOP Conference Series: Materials Science and Engineering, 736(5). https://doi.org/10.1088/1757-899X/736/5/052032
Rebuttal comments of titanium metals corporation united states department of commerce (2019). UNITED STATES DEPARTMENT OF COMMERCE. BIS-2018-0027
Regonini, D., Bowen, C. R., Jaroenworaluck, A., & Stevens, R. (2013). A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering R: Reports, 74(12), 377–406. https://doi.org/10.1016/j.mser.2013.10.001
Reinforcing European industrial competitiveness. European Economic and Social Committee. ISBN 978-92-830-2529-0 https://doi.org/10.2864/95698
Roguska, A., Pisarek, M., Belcarz, A., Marcon, L., Holdynski, M., Andrzejczuk, M., & Janik-czachor, M. (2016). Applied Surface Science Improvement of the bio­functional properties of TiO 2 nanotubes, 388, 775–785. https://doi.org/10.1016/j.apsusc.2016.03.128
Romero, C., Yang, F., & Bolzoni, L. (2018). Fatigue and fracture properties of Ti alloys from powder-based processes – A review. International Journal of Fatigue, 117(August), 407–419. https://doi.org/10.1016/j.ijfatigue.2018.08.029
S. Van Gilsa. “Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry”. Surface and coating technology. 2004. https://doi.org/10.1016/j.surfcoat.2004.01.021
Saha, R. L., & Jacob, K. T. (1986). Casting of Titanium and Its Alloys. Defence Science Journal, 36(2), 121–141. https://doi.org/10.14429/dsj.36.5967
Saji, V. S., Cheol, H., & Brantley, W. A. (2009). An electrochemical study on self­ordered nanoporous and nanotubular oxide on Ti – 35Nb – 5Ta – 7Zr alloy for biomedical applications. Acta Biomaterialia, 5(6), 2303–2310. https://doi.org/10.1016/j.actbio.2009.02.017
Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 11, 494–502. https://doi.org/10.1016/j.actbio.2014.10.017
Samarov, V., Seliverstov, D., & Froes, F. H. (2015). Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing. In Titanium Powder Metallurgy: Science, Technology and Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800054-0.00018-6
Schindhelm, K., & Milthorpe, B. K. (n.d.). An overview of biomaterials. Australasian Physical & Engineering Sciences in Medicine / Supported by the Australasian College of Physical Scientists in Medicine and the Australasian Association of Physical Sciences in Medicine, 9, 29–32. https://doi.org/10.1361/hmmd2003p001
Semenova, I. P., Valiev, R. Z., Yakushina, E. B., Salimgareeva, G. H., & Lowe, T. C. (2008). Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation. Journal of Materials Science, 43(23–24), 7354–7359. https://doi.org/10.1007/s10853-008-2984-4
Shaping Europe – Recent EESC Achievements (2012). Committee, E. E., & Social. ISBN 978-92-830-2760-7, https://doi.org/10.2864/562577
Shingu, H. (1990). Mechanical alloying. In Journal of Japan Institute of Light Metals (2nd ed., Vol. 40, Issue 11). Elsevier Ltd. https://doi.org/10.2464/jilm.40.850
Shuster, R. E. (2013). Modeling of Aluminum Evaporation During Electron Beam Cold Hearth Melting of Titanium Alloy Ingots. June, 105.
Simchi, a., Petzoldt, F., & Pohl, H. (2003). On the development of direct metal laser sintering for rapid tooling. Journal of Materials Processing Technology, 141(3), 319–328. https://doi.org/10.1016/S0924-0136(03)00283-8
Sista, S., Nouri, A., Li, Y., Wen, C., Hodgson, P. D., & Pande, G. (2013). Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium­zirconium alloy. Journal of Biomedical Materials Research - Part A, 101(12), 3416–3430. https://doi.org/10.1002/jbm.a.34638
Smirnov, M. A., Kaplan, M. A., & Sevostyanov, M. A. (2018). Receiving finely divided metal powder by inert gas atomization. IOP Conference Series: Materials Science and Engineering, 347(1). https://doi.org/10.1088/1757-899X/347/1/012033
Song, H. J., Kim, M. K., Jung, G. C., Vang, M. S., & Park, Y. J. (2007). The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. Surface and Coatings Technology, 201(21 SPEC. ISS.), 8738–8745. https://doi.org/10.1016/j.surfcoat.2006.11.022
Suárez, H. E. J., Sanchez, N. A. de, & Diaz, J. A. A. (2018). Titanium Carbide (TiC) Production by Mechanical Alloying. Powder Technology. https://doi.org/10.5772/intechopen.76690
Sun, P., Fang, Z. Z., Zhang, Y., & Xia, Y. (2017). Review of the Methods for Production of Spherical Ti and Ti Alloy Powder. Jom, 69(10), 1853–1860. https://doi.org/10.1007/s11837-017-2513-5
Tan, A. W., Pingguan-murphy, B., Ahmad, R., & Akbar, S. A. (2012). Review of titania nanotubes : Fabrication and cellular response. Ceramics International, 38(6), 4421–4435. https://doi.org/10.1016/j.ceramint.2012.03.002
Torralba, J. M., & Campos, M. (2014). Toward high performance in Powder Metallurgy. Revista de Metalurgia, 50(2). https://doi.org/10.3989/revmetalm.017
Traini, T., Mangano, C., Sammons, R. L., Mangano, F., Macchi, a., & Piattelli, a. (2008). Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Materials, 24(11), 1525–1533. https://doi.org/10.1016/j.dental.2008.03.029
Truong, V. K., Lapovok, R., Estrin, Y. S., Rundell, S., Wang, J. Y., Fluke, C. J., Crawford, R. J., & Ivanova, E. P. (2010). The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials, 31(13), 3674–3683. https://doi.org/10.1016/j.biomaterials.2010.01.071
U.S. Geological Survey. (2011). Titanium and titanium dioxide 1. World, 1(703), 172–173.

U.S. Strategic Material Supply Chain Assessment: Titanium. (2016). U.S. Department of Commerce Bureau of Industry and Security Office of Technology Evaluation.

UNE-EN ISO 10993: 2010 “Evaluacin biolgica de productos sanitarios UNE-EN ISO 25178-2 Calidad superficial: Áreas Parte 2: Términos, definiciones y parámetros de calidad superficial.
UNE-EN ISO 7405: 2009 “Ondontología. Evaluacin de la biocompatibilidad de los productos sanitarios utilizados en odontología”.
Ungureanu, E., Vranceanu, D. M., Vladescu, A., Parau, A. C., Tarcolea, M., & Cotrut, C. M. (2021). Effect of doping element and electrolyte’s ph on the properties of hydroxyapatite coatings obtained by pulsed galvanostatic technique. Coatings, 11(12), 1–16. https://doi.org/10.3390/coatings11121522
Valiev, R. Z., Estrin, Y., Horita, Z., Langdon, T. G., Zehetbauer, M. J., & Zhu, Y. (2016). Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. Jom, 68(4), 1216–1226. https://doi.org/10.1007/s11837-016-1820-6
Valiev, R. Z., Parfenov, E. V., & Parfenova, L. V. (2019). Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality. Materials Transactions, 60(7), 1356–1366. https://doi.org/10.2320/matertrans.MF201943
Valiev, R. Z., Semenova, I. P., Latysh, V. V., Rack, H., Lowe, T. C., Petruzelka, J., Dluhos, L., Hrusak, D., & Sochova, J. (2008). Nanostructured titanium for biomedical applications. Advanced Engineering Materials, 10(8), 8–11. https://doi.org/10.1002/adem.200800026
Vasilescu, C., Drob, S. I., Neacsu, E. I., & Mirza Rosca, J. C. (2012). Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids. Corrosion Science, 65, 431–440. https://doi.org/10.1016/j.corsci.2012.08.042
Vranceanu, D. M., Ungureanu, E., Ionescu, I. C., Parau, A. C., Kiss, A. E., Vladescu, A., & Cotrut, C. M. (2022). Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatite. Coatings, 12(1). https://doi.org/10.3390/coatings12010069
Wang, B. R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., & Kitamura, A. (1998). Photogeneration of Highly Amphiphilic TiO 2 Surfaces **, 135–138. https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID­ADMA135>3.0.CO;2-M
Wang, D., Ling, X., & Peng, H. (2015). Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process. Applied Thermal Engineering, 84, 437–447. https://doi.org/10.1016/j.applthermaleng.2015.03.003
Wang, N., Peng, H., Ling, X., Kang, J., & Xu, M. (2017). Experimental Investigation of Slag Particles of Ligament Mode Disintegration in Spinning Disk Atomizing. Energy Procedia, 105, 622–627. https://doi.org/10.1016/j.egypro.2017.03.365
Wu, H., Jiang, J., Liu, H., Sun, J., Gu, Y., Tang, R., Zhao, X., & Ma, A. (2017). Fabrication of an ultra-fine grained pure titanium with high strength and good ductility via ECAP plus cold rolling. Metals, 7(12). https://doi.org/10.3390/met7120563
Yan Liu, Ziyin Lin, Wei Lin,† Kyoung Sik Moon, and C. P. Wong (2012). Reversible Superhydrophobic-Superhydrophilic Transition of ZnO Nanorod/Epoxy Composite Films. ACS Appl. Mater. Interfaces 2012, 4, 3959-3964. https://doi.org/ 10.1021/am300778d
Yan, Y., Zhang, X., Huang, Y., Ding, Q., & Pang, X. (2014). Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2nanotube composite coatings on titanium. Applied Surface Science, 314, 348–357. https://doi.org/10.1016/j.apsusc.2014.07.027
Yao, C., & Webster, T. J. (2009). Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 91(2), 587–595. https://doi.org/10.1002/jbm.b.31433
Yoo, H., Kim, M., Kim, Y. T., Lee, K., & Choi, J. (2018). Catalyst-doped anodic TiO2 nanotubes: Binder-free electrodes for (photo) electrochemical reactions. Catalysts, 8(11), 1–25. https://doi.org/10.3390/catal8110555
Young-Taeg Sul, Carina B. Johansson, Yongsoo Jeong, Tomas Albrektsson. “The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes”. Medical Engineering & Physics 23 (2001) 329–346 https://doi.org/10.1016/S1350-4533(01)00050-9
Yu, W. Q., Zhang, Y. L., Jiang, X. Q., & Zhang, F. Q. (2010). In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Diseases, 16(7), 624–630. https://doi.org/10.1111/j.1601-0825.2009.01643.x
Zadra, M. (2013). Mechanical alloying of titanium. Materials Science and Engineering A, 583, 105–113. https://doi.org/10.1016/j.msea.2013.06.064
Zhang, Y., Figueiredo, R. B., Alhajeri, S. N., Wang, J. T., Gao, N., & Langdon, T. G. (2011). Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature. Materials Science and Engineering A, 528(25–26), 7708–7714. https://doi.org/10.1016/j.msea.2011.06.054
Zhao, Y., Cui, Y., Numata, H., Bian, H., Wako, K., Yamanaka, K., Aoyagi, K., & Chiba, A. (2020). Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-75503-w
Zherebtsov, S. V., Dyakonov, G. S., Salem, A. A., Malysheva, S. P., Salishchev, G. A., & Semiatin, S. L. (2011). Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium. Materials Science and Engineering A, 528(9), 3474–3479. https://doi.org/10.1016/j.msea.2011.01.039
Zhou, Y. L., Niinomi, M., Akahori, T., Fukui, H., & Toda, H. (2005). Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Materials Science and Engineering A, 398(1–2), 28–36. https://doi.org/10.1016/j.msea.2005.03.032
Zhu, Y. T., & Langdon, T. G. (2004). The fundamentals of nanostructured materials processed by severe plastic deformation. Jom, 56(10), 58–63. https://doi.org/10.1007/s11837-004-0294-0
Zwilling V, Ceretti ED, Forveille AB. Anodic oxidation of titanium and TA6V alloy in chromic media: an electrochemical approach. Electrochim Acta 1999; 45:921–9. https://doi.org/10.1016/S0013-4686(99)00283-2

Cómo citar

Lario Femenia, J., & Amigó Borrás, V. (2023). Desarrollo de aleaciones de titanio: Implicaciones en el sector biomédico europeo. Recursos Educativos En Abierto EdUPV. Recuperado a partir de https://monografias.editorial.upv.es/index.php/rea/article/view/643

Descargas

La descarga de datos todavía no está disponible.